Management of Patients with Abdominal Malignancy after Remote Jejunoileal Bypass: Surgical Considerations Decades Later

Jan P Kamiński, MD, MBA, Vijay K Maker, MD, FACS, Ajay V Maker, MD, FACS

Jejunoileal bypass (JIB) operations were introduced in 1963 as a surgical treatment for morbid obesity. The procedure gained popularity in the 1960s and 1970s as the most effective surgical intervention at the time for achieving and maintaining weight loss. However, both short- and long-term follow-up after these operations revealed a barrage of metabolic complications, including diarrhea, acute liver failure, cirrhosis, renal lithiasis, and renal insufficiency. Mortality and morbidity rates associated with the procedure were considerable and the procedure was eventually abandoned in favor of safer bariatric surgery alternatives. As a result, up to 33% of patients who had received a JIB underwent a reversal procedure. The most compelling reasons for reversal were life-threatening malnutrition, immune complex disease, renal oxalate stones, osteomalacia, and severe electrolyte disturbance. A small group of patients underwent reversal secondary to the reduced quality of life caused by severe diarrhea and foul-smelling stools. Those patients that survived the procedure and metabolic sequelae were found to compensate for the profound malabsorption with hypertrophy of the minimally functional small bowel and profound hypertrophy of the entire colon.

Four decades after the peak of these operations, this aging population is now presenting with surgical gastrointestinal diseases to a younger generation of surgeons who likely never performed these historical operations or managed their metabolic needs. Long-term follow-up of post-bariatric surgery patients, including those who underwent JIB, has revealed that the most common cause of death more than 12 months from the procedure is malignancy and not cardiovascular causes, as might have been suspected. Survivors are presenting with abdominal malignancies that our current generation of surgeons needs to manage. This article reviews preclinical and clinical data of the preoperative, operative, and postoperative considerations necessary to ideally manage these patients with a bowel resection.

HISTORY OF THE JEJUNOILEAL BYPASS PROCEDURE

The surgical treatment of obesity can be traced back to the 1950s; however, it came into the mainstream once the medical community recognized that obesity was a disease with life-threatening comorbidities and that it was becoming an epidemic. In 1962, 12.8% of Americans were considered obese; the current figure is 35%. The first recorded operation for weight reduction was performed in 1952 by Viktor Henrikson of Sweden. Subsequently, Kremen and colleagues from the University of Minnesota performed JIB operations on dogs, followed by a JIB in a human patient in 1954. Payne and colleagues were the first group to publish a case series of JIB in patients that showed weight loss. The first attempt involved 10 patients in whom a segment of proximal jejunum was anastomosed to the transverse colon; however, the debilitating diarrhea, dehydration, and severe electrolyte imbalances led to either complete reversal of the procedure or conversion to a JIB. Eventually, they advised against the jejunocolic anastomosis and recommended the JIB procedure. This involved trans-ecting the jejunum 15 inches past the ligament of Treitz and attaching it end-to-side to the ileum 10 inches proximal to the ileocecal valve. When it was discovered that about 10% of these patients either regained the weight or did not have satisfactory weight loss due to reflux into the bypassed segment, an end-to-end anastomosis with the bypassed limb draining into the cecum, transverse colon, or sigmoid colon was suggested by Scott and colleagues. Scott’s end-to-end operation involved 30 cm of jejunum anastomosed to either the last 30,
and evaluated to determine suitability for major surgery and to optimize the patient for the procedure. In addition, many of these patients have or had functional gastrointestinal complications that might have affected normal gastrointestinal pliability and caliber. Also critical to assess is the JIB as a possible cause for a colon malignancy. In some experimental models, JIB is believed to be a risk factor for developing colorectal cancer. These issues are addressed here.

COMPLICATIONS OF THE JEJUNOILEAL BYPASS

Electrolyte imbalance

Diarrhea developed after the operation in most patients, leading to substantial electrolyte abnormalities, especially hypokalemia. Persistent diarrhea occurred in 17% to 45% of patients, depending on the type of JIB performed,\(^{19}\) leading to deficits in potassium, magnesium, and calcium. Most of these patients were given oral supplementation until the diarrhea was under control; however, a small percentage had to be hospitalized for more severe deficits that required parenteral supplementation. Potassium and calcium losses that required hospitalization were seen in patients up to 15 years after the initial JIB.\(^{2}\) Two mechanisms responsible for this diarrhea included decreased transit time and decreased surface area for absorption. The small amount of ileum left in these patients resulted in increased concentrations of bile acids in the colon, where they induced secretion of water, sodium, and chloride into the large bowel lumen, causing diarrhea. The enterohepatic cycle was also altered substantially in these patients, resulting in bile-salt wasting, decreased fat emulsification, and steatorrhea. The loss of bile salts and functional ileum compounded the already malnourished patient with micronutrient deficiencies, including the fat-soluble vitamins A, D, E, K, and B-12. In addition, with increased fat malabsorption, larger amounts of fatty acids were presented into the colon, where colonic bacteria transformed them into cathartic hydroxyl fatty acids.\(^{20}\) Excessive intake of liquids and foods high in fat and lactose were other reasons for refractory diarrhea. However, after 12 to 18 months, severe diarrhea usually ceased, as the remaining functional bowel adapted to increase absorption of nutrients by hypertrophy of individual enterocytes, as described by Wright and Tilson.\(^{21}\)

Hepatic insufficiency

Although many of the patients had fatty livers before the operation, these worsened after surgery. Hepatic fibrosis developed in 29% and liver failure developed in 7% to
Liver complications ranged from asymptomatic elevations in liver enzymes to death secondary to acute liver failure, which, when present, usually occurred within the first 2 years after JIB. The most common effects included elevated liver enzymes, hepatic steatosis, and increased fatty metamorphosis. Progressive hepatic abnormalities of the liver leading to cirrhosis and liver failure continued to occur even 15 years after the operation. The cause of liver disease after bypass included multiple factors, such as increased fat deposition, protein deficiency, and exposure to toxic substances from bacterial overgrowth and bile salts.

Gout
Although transitory hyperuricemia is common after bypass, clinical gout is rare. Patients suffering from gouty episodes after the operation were generally those who had a history of gout before the operation. Most were treated as outpatients and only 1 patient was reported in the literature to require in-hospital care for his gouty nephropathy.

Renal insufficiency
The probability of renal insufficiency developing up to 15 years after JIB was found to be 9%. The progressive nature of this disease resulted in 2% of patients requiring permanent dialysis and <1% undergoing renal transplantation. One major cause of renal insufficiency was the considerable risk of renal stones developing, as described earlier; another was prerenal. This was secondary to decreased bowel absorptive surface area and chronic loss of fluid in diarrhea. Another mechanism of renal insufficiency involved oxalate deposition damaging the renal parenchyma, causing an interstitial nephritis-like picture affecting primarily the renal cortex.

Intestinal complications
Intestinal complications occurring in this patient population included intussusception, bypass enteropathy, intestinal pneumatosis, pseudo-obstruction, transmural ileocolitis, and the blind loop syndrome. Colonic pseudo-obstruction presented with abdominal pain and distention, but usually resolved with conservative treatment. Antibiotics were often given because anaerobes have been implicated in the pathogenesis of this complication for these patients. Intestinal pneumatosis occurred in asymptomatic patients 16% of the time, but also presented along with bypass enteritis and colonic pseudo-obstruction. Surgical resection was pursued only when bleeding or obstruction were observed clinically. Otherwise, conservative treatment with oxygen and antibiotics was often elected.

Colorectal carcinogenesis
Obesity itself is a major risk factor for malignancy, however, the post-JIB anatomy can predispose patients to specific cancers. There are reports of gastric remnant lymphomas in gastric bypass patients and the senior author has anecdotally noticed an association between gastrointestinal lymphoma and JIB in 3 patients, although the correlation is not proven. Colorectal carcinogenesis has been a concern in patients with JIB secondary to the increased amount of bile acids, regarded as a carcinogenic substance to colonic mucosa, found in JIB patient colons—about 10 times the amount of bile.
acids compared with other patients.70 In addition, several experimental animal studies have shown an increased risk of colon carcinoma in rats with JIB compared with controls with sham operations.71,72 Jejunoileal bypass patients have a marked and persistent increase in cell proliferation in the large intestine compared with non-JIB patients.74 Although there have been patients reported in the literature with clinical evidence of colon carcinoma or dysplasia75,76 after JIB, a more recent clinical study demonstrated no increased risk of colon cancer in JIB patients on colonoscopy surveillance up to 17 years after the surgery.77 As the pathogenesis of colorectal carcinoma requires extended time, additional follow-up is needed in these patients.

Based on these complications and on several studies showing gastric bypass as a superior procedure,78,79 the jejunoileal bypass operation was almost completely discontinued by the early 1980s. By 1981, >10,000 JIBs had been performed in >400 publications in the English-language literature, and an estimated 25,000 had been performed in the United States alone. The perioperative mortality of the procedure ranged between 1.8% and 4%, and the mortality within 2 years of the bypass had been reported to be as high as 4.2%.18 One series reported 9% mortality on 15-year follow-up.2 The exact number of patients living with JIB is unknown; however, if an estimated 20% of patients had life-threatening complications develop to and underwent reversal, and another 10% have died, then about 18,000 people might be living with a JIB in the United States today. Many of these patients are living with metabolic/electrolyte imbalances, micronutrient deficiencies, hepatic insufficiency, biliary and renal stone disease, osteomalacia, autoimmune diseases, gout, or renal insufficiency. Long-term morbidity has persisted, and in patients with hepatic and renal disease, there did not appear to be a plateau even after more than 10 to 15 years.2 Therefore, before embarking on intestinal resection in these patients, these preoperative comorbidities should be investigated, appropriately supported, and optimized.

Parenteral nutrition

The nonalcoholic fatty liver changes seen in patients after JIB were found to be similar to those induced with total parental nutrition (TPN) use.82 Therefore, although not explicitly studied, it would follow that TPN use in a post-JIB patient could compound the liver toxicity already present. However, for most patients to survive decades after the procedure, they are likely borderline malnourished rather than severely malnourished. This is possibly and likely due to longer functional segments and increased “backwash” hypertrophy as described previously. If necessary to prepare the patient for major surgery, TPN can be used and there is precedent in the literature. In one study, 5 of 37 patients preparing for reversal of their JIB required preoperative parenteral alimentation to correct protein and electrolyte imbalances for 10 to 40 days. In this group of patients, ileus was the most common early postoperative complication for which TPN was required in 7 patients.80 Even in patients with severe liver disease and malnutrition after JIB, there are reports of recuperation with parenteral nutrition as a life-saving measure.83 Therefore, parenteral nutrition can have a place in the management of the severely malnourished JIB patient before major abdominal operation. The nutritional parameters, for example, albumin <2.8 g/dl, to determine which patient can benefit from preoperative TPN have been studied in multiple trials, including by the Veterans Affairs TPN Cooperative Group84 and might be applicable to JIB patients. We have not found it necessary preoperatively, but have used postoperative TPN in a patient with a prolonged postoperative ileus after reversal without major complications or liver toxicity.

Operative considerations

More than 30 years later, some individuals with this anatomy still remain. At the time of surgery for intestinal tract disease, the bowel will need to be assessed and the exact anatomy understood to proceed safely and to not leave the patient with severe metabolic problems.

Intraoperative assessment

In our experience with this anatomy, we have found large-caliber and substantially thickened segments of proximal jejunum and distal ileum, with highly atrophic and pencil thin, but pliable, bypassed small intestine. A short segment of the distal ileum proximal to the jejunal anastomosis can also be hypertrophic, likely from antiperistaltic reflux up the defunctionalized limb. Recognition of these characteristics will make intraoperative identification of the anatomy easier (Fig. 1). In addition, the colon can be absolutely massive, >7 feet long, hypertensive, and with an abnormally thickened wall, as is depicted in a recent total colectomy specimen we performed for colonic polyposis in a patient that had undergone a JIB 30 years ago (Fig. 2). Based on these findings, we surmise that both the small and large bowel compensate both anatomically and physiologically for the loss of the absorptive capacity of the majority of the small bowel over time (Fig. 3). In fact, it is possible that without this compensatory increase in surface area and absorptive capacity, the procedure would be incompatible with life, as a remnant 25 inches of jejunum and ileum would
otherwise result in “short bowel” syndrome, which was almost universally fatal before the invention of TPN. In the operating room, one will be able to measure the jejunal and ileal segments with hypertrophy and determine the length of functional small bowel (Fig. 1). Added to this distance should be the hypertrophic length of bypassed ileum caused by reflux at the jejunoileal anastomosis, because this portion of small bowel is engaged in nutrient absorption.

We are not aware of any literature that has found differences in the right or left colon absorption capabilities in JIB patients, however, preservation of at least half of the colon is roughly equivalent to 50 cm of small bowel with regard to the need for supplemental parenteral nutrition. In addition, the ileocecal valve can effectively increase the absorptive capacity of the remaining small bowel up to 2 times that expected for the same length of small bowel without an intact ileocecal valve. Therefore, the appropriate operative measures can be taken in JIB patients, depending on the following factors: an intact ileocecal valve, the length of functional (hypertrophied) small bowel, and the amount of functional colon.

Intestinal surgery for malignancy

Long-term mortality after bariatric surgery, including JIB, was assessed in >12,000 patients for 25 years in Sweden. In this country, all citizens are assigned a unique identification number to which all medical procedures are linked in a national Inpatient Care Registry, which is also linked to the national Cause of Death Registry, providing accurate data on cause-specific mortality. It was determined that after 1 year of follow-up, the most common cause of death after anti-obesity surgery was malignancy, with cancer accounting for 17% of patient deaths. Specific to JIB patients alone, there are additional reports of anorectal carcinoma, malignant lymphoma of the ileum, ileocecal adenocarcinoma, and colon dysplasia/carcinoma. These data, along with the physiology of the JIB that can predispose these patients to colorectal carcinogenesis (previous section), suggest that the surgeon operating on these patients now might be doing so for malignancy.

We recommend treating patients with an intestinal malignancy with the appropriate oncologic operation and not to consider decreased nodal sampling or suboptimal margins. After the appropriate operation, a reversal might not be necessary if the combined length of functional small bowel is 50 to 70 cm (including the area of bypassed ileum with backwash hypertrophy; see Fig. 1) with an intact colon; there is 50 to 70 cm of functional small bowel with an intact ileocecal valve; or there is 100 cm to 150 cm of functional small bowel without any colon or an intact ileocecal valve. If a reversal is necessary, this can be performed at the same operation, knowing that a bridge of parenteral nutrition might be required (see postoperative considerations).

Ramifications of the JIB anatomy and physiology that will be encountered by the operating surgeon include bowel adaptive responses and bypass enteropathy. Intraoperative assessment of the proposed resected segment and its involvement in the functional anatomy of the patient will inform whether a reversal of the bypass must be performed. Unique to the JIB anatomy is the consideration that the colon contributes to nutritional balance and caloric intake, and that if substantial portions of the colon require excision, a reversal of the bypass is indicated.

Bowel adaptive responses

It has been shown that small bowel adaptation occurs after JIB in the functioning remnant, demonstrating hypertrophy, dilation, and gradual elongation. In addition, villi lengthening, crypt deepening, and general small intestinal hypertrophy occurred after bypass, which increased the absorptive capability of the small bowel. Studies have shown that JIB surgery reduced the total intestinal surface area to 8.5%; however, 2 years after bypass, there was a 300% increase in surface area, giving a preoperative net surface area of 26%. The bypassed segment, especially the ileum, atrophied and villi were either reduced in size, remained unchanged, or hypertrophied at the site of colonic regurgitation.

Animal studies revealed that the bypassed cohorts displayed dilation of the colon with a substantial increase in wall thickness, increased crypt depth, decreased number of goblet cells, and increased number and size.

Figure 2. Demonstrated is a massive (>7.5 ft) tortuous colon, hypervascularized, and with a thickened wall that required total abdominal colectomy for severe polyposis coli unmanageable by endoscopy in a patient that had undergone jejunoileal bypass 30 years ago. Colon caliber reached 14 cm.
of enterocytes compared with controls. In addition, an increase in the absorptive capacity of the colon was demonstrated in bypassed rats. The colon has been shown to increase its absorptive capacity by 3 to 5 times, and to increase the energy absorption by converting unabsorbed carbohydrates into absorbable short-chain fatty acids. The bacteria, mostly anaerobes, such as bacteroides, bifidobacteria, eubacteria, fusobacteria, streptococci, lactobacilli, and enterobacteria, in the colon have been shown to increase the production of short-chain fatty acids when provided with an increased amount of substrates for colonic fermentation, totaling the maximum energy absorption by the colon to up to 500 kcal/d. These experiments highlight the adaptive importance of the colon as an energy source for patients after JIB (Fig. 3).

Bypass enteropathy

Bypass enteropathy (bypass enteritis) likely represents a spectrum of diseases. It is characterized by dramatic bloating, severe abdominal distention, intestinal pseudo-obstruction, and nocturnal diarrhea. An acute form of enteritis was found in 14% of patients in the early weeks postoperatively, and can progress to gangrene with sepsis or pneumatosis intestinalis. The cause is unknown but can include bacterial overgrowth within the excluded bowel, changes in intraluminal pH, loss of peristalsis, and mechanical obstruction. Prostaglandin, methadone, and other narcotics accentuate the condition and antibiotics are often effective in treatment. Identification of a history of this complication might alert the operating surgeon to the quality of the bypassed bowel and expectation of adhesions.

SPECIAL CONSIDERATIONS

Reversal

The functional jejunal limb is divided at the jejunoileal anastomosis. The proximal end of the defunctionalized jejenum, or its most proximal loop that can be mobilized if severely scarred from previous enteritis, is Anastomosed to the functional and hypertrophic jejunal limb. Animal experiments studying intestinal structure and function after JIB in rats found no difference in intestinal structure between the bypassed intestine and intestine from transplanted controls. Additional experiments demonstrated an increase in seromuscular mass of both the in-continuity

![Figure 3. Post jejunoileal bypass (JIB), the colon dilates with a considerable increase in wall thickness, increased crypt depth, decreased number of goblet cells, and increased number and size of enterocytes compared with controls. Absorptive capacity can increase by 3 to 5 times. Post-JIB colon with a markedly thickened and hypertrophic wall demonstrates (A) normal mucosa and (B) mucosa almost twice the thickness of normal mucosa, 200x. Severe hypertrophy of the colonic villi is a compensatory mechanism to increase not only fluid reabsorption, but also nutrient acquisition. (C) Note the increased surface area produced by multiple redundant folds of colonic mucosa.](image-url)
atrophy. Therefore, the strength of the anastomosis and
However, when bypassed intestine was compared with
feeding, bypassed small bowel transit times were increased
indicating a persistent change in smooth muscle function.
However, when bypassed intestine was compared with
transected controls, there was no indication of muscular
atrophy. Therefore, the strength of the anastomosis and
integrity of the tissues appear to be maintained. The surgeon
could be cognizant of the size mismatch and ensure that
a patulous anastomosis is created. This would include
a 5- to 6-cm either handsewn or stapled anastomosis per-
formed in a side-to-side, functional end-to-end fashion.
Critical to mention, especially if stapled, is the recom-
pensation to triangulate the common enterotomy channel with
the GIA staple line. This can be accomplished by placing the
GIA staple lines at either end of the TA staple line, rather
than to approximate them. This would ensure that the
closure of the common enterotomy channel does not
partially obstruct the flow into the already small-caliber
defunctionalized limb.

Liver resection
Fatty liver and steatosis develop in morbidly obese
patients. To compound this situation, nonalcoholic steato-
hepatitis with cirrhosis will occur after JIB in up to 10% of
patients. The JIB has been found to result in liver changes similar to those found in alcoholic liver disease,
including progressive steatosis, pericellular fibrosis, and
cirrhosis. The common inciting factor is likely acetald-
hyde, because it is the primary metabolic product of both
alcohol breakdown and enteric bacterial overgrowth. As
described previously, hepatic insufficiency is a known
complication of JIB and, recently, steatohepatitis with
cirrhosis has been described as an indication for liver trans-
plantation. Lowell and colleagues, in their case series of
their series, in the setting of hepatic malignancy or the
result in acute liver failure, as experienced in 1 patient in
the past. If liver dysfunction is identified before liver
failure, the bypass should be reversed. However, if liver
dysfunction and cirrhosis are severe, then reversal can
result in acute liver failure, as experienced in 1 patient in
their series. In the setting of hepatic malignancy or the
need for liver resection, the liver should be assumed
to be diseased and parenchymal-sparing procedures
performed. The extent of liver disease secondary to
hepatitis, steatosis, steatohepatitis, fibrosis, chemotherapy,
or cirrhosis should be determined by cross-sectional
imaging and a liver biopsy performed if indicated. This
information, combined with calculations of the proposed
future liver remnant from 3-dimensional cross-sectional
imaging and volumetrics, is helpful in predicting the risk
of liver failure postoperatively and in surgical planning.
Reversal should only be performed if needed and only after
adequate liver function has been confirmed. Standard
preoperative liver function tests, such as transaminases,
alkaline phosphatase, bilirubin, clotting factors, and serum
bile acids, are sufficient most of the time; however, high-
risk cirrhotic patients can benefit from an indocyanine
green clearance test, which has been used to estimate
hepatic functional reserve in cirrhotic patients undergoing
hepatectomy for hepatocellular carcinoma. Postoperative considerations
Management of the JIB patient after bowel resection has
added challenges to the usual postoperative management
of patients after gastrointestinal resection. The existing
preoperative metabolic, electrolyte, hepatic, bone, and
renal imbalances must all be consciously and aggressively
supported; however, nutritional support is paramount
and the patient will not tolerate long periods of a negative
protein calorie balance. These patients already have poor
tissue consistency and relative malnourishment preopera-
tively. Postoperatively, they will have increased metabolic
needs without adequate enteric ability to absorb nutri-
ents, either secondary to a loss of portions of small and/or
large bowel that was used before, or from impotent
and newly bypassed small intestine that is now “online,”
but with chronically atrophic villi and poor absorptive
capacity.

Metabolic and nutritional support
Early TPN use can be considered and used to transition
to enteral feeds once bowel function returns. We have
used an elemental formula via the nasogastric tube to
augment oral intake because these elemental feeds have
been shown to be efficiently absorbed by the proximal
small intestine and to facilitate adaptation by preserving
intestinal mass in the proximal small bowel. As oral
intake increases, the patient can be transitioned to a
regular diet with a focus on constipating foods, such
as boiled milk, rice, toast, and peanut butter, to help
normalize evacuation times. We have also used bananas
and apples as part of the diet to act as natural binding
agents.

Specific supplements to support the atrophied bowel
can also be used, including glutamine, medium-chain
triglycerides oil, calcium lactate, and cholestryamine.
Glutamine is a locally acting fuel source for rapidly dividing enterocytes and has been shown to accelerate hyperplasia, enhance intestinal sodium absorption, preserve mucosal integrity, enhance various T-cell functions after colorectal resection, and improve nitrogen balance. Medium-chain triglycerides, such as coconut oil, are an economical way to increase caloric intake with an oral diet because they can be absorbed directly by the proximal small bowel. We have used this supplement for up to 1 month after discharge from the hospital. Cholestyramine, a bile-salt-binding agent, can relieve diarrhea caused by bile salts until the small bowel regains the capacity to absorb most of the bile-acid pool. This agent also aids in prevention of nephrolithiasis by binding to intraluminal oxalate. Calcium supplements have been used similarly to prevent nephrolithiasis by increasing calcium oxalate-insoluble complexes until the small bowel regained capacity for bile-acid absorption.

Knowledge of the clinical use of these agents was common to the generation of surgeons that originally cared for these patients (eg, the senior author, V K Maker, who performed >40 JIBs before they were discontinued), but not traditionally part of the education of the current younger generation of gastrointestinal and oncologic surgeons (eg, A V Maker, who was trained in the era of gastric bypass and restrictive bariatric procedures). Currently, many of the nutritional considerations of our patients have been delegated to the metabolic or nutrition services of our hospitals; however, with the rare presentation of these problems now, the clinical use of these agents is not part of their clinical armamentarium in our experience. Therefore, the metabolic and nutritional support of these patients will be dependent on the operating surgeon who needs to be familiar with the supplements.

Infectious complications: Clostridium difficile

Human and animal JIB studies have shown that both the excluded loop of small bowel and the intact small bowel grow bacteria normally present in the large intestine, especially Escherichia coli and B fragilis. Other native colonic bacteria, such as C difficile, can be found at higher concentrations in the small intestine of a patient after a JIB. Therefore, even after a total colectomy, there is an increased risk of a C difficile infection. Diarrhea and fever workup postoperatively should include C difficile tests and appropriate treatment if discovered as a pathogen.

CONCLUSIONS

Past research validated the use of the JIB in patients with morbid obesity, and the short- and long-term complications were well documented in both preclinical models and patients. Reversal of the bypass in the short term was studied as it related to life-threatening complications; however, indications for bypass reversal are again resurfacing with an aging survivor population that is now presenting with intestinal diseases and malignancies. There is a gap in knowledge for the current generation of surgeons that must now care for these patients in the preoperative, operative, and postoperative setting. This review details the studies surrounding the metabolic derangements that must be addressed preoperatively, the intraoperative findings to be expected and determined to establish if a reversal will need to be performed, and the nutritional and infectious issues that need to be supported for the patient to successfully recover from surgery. The study is limited in that there is a paucity of research on this topic in the last few decades and that our personal experiences are often limited to a small number of patients. However, this review is even more relevant, as a result, in that it distills for the current cadre of surgeons the highlights of the published data with the experiences of a junior oncology surgeon managing these patients currently with the experiences of a senior surgeon who experienced them from the beginning. In patients with an earlier JIB presenting with gastrointestinal neoplasia, bowel resection can be performed safely with particular attention to the perioperative considerations unique to this patient population.

Author Contributions

Study conception and design: Kamiński, V K Maker, A V Maker
Acquisition of data: Kamiński, A V Maker
Analysis and interpretation of data: Kamiński, V K Maker, A V Maker
Drafting of manuscript: Kamiński, A V Maker
Critical revision: Kamiński, V K Maker, A V Maker

Acknowledgment: The authors would like to thank Dr Carey August for her expert preparation of the histologic images.

REFERENCES
