Cost-Effective Treatment of Patients with Symptomatic Cholelithiasis and Possible Common Bile Duct Stones

Lisa M Brown, MD, MAS, Stanley J Rogers, MD, FACS, John P Cello, MD, Karen J Brasel, MD, MPH, FACS, John M Inadomi, MD

BACKGROUND:
Clinicians must choose a treatment strategy for patients with symptomatic cholelithiasis without knowing whether common bile duct (CBD) stones are present. The purpose of this study was to determine the most cost-effective treatment strategy for patients with symptomatic cholelithiasis and possible CBD stones.

STUDY DESIGN:
Our decision model included 5 treatment strategies: laparoscopic cholecystectomy (LC) alone followed by expectant management; preoperative endoscopic retrograde cholangiopancreatography (ERCP) followed by LC; LC with intraoperative cholangiography (IOC) ± common bile duct exploration (CBDE); LC followed by postoperative ERCP; and LC with IOC ± postoperative ERCP. The rates of successful completion of diagnostic testing and therapeutic intervention, test characteristics (sensitivity and specificity), morbidity, and mortality for all procedures are from current literature. Hospitalization costs and lengths of stay are from the 2006 National Centers for Medicare and Medicaid Services data. The probability of CBD stones was varied from 0% to 100% and the most cost-effective strategy was determined at each probability.

RESULTS:
Across the CBD stone probability range of 4% to 100%, LC with IOC ± ERCP was the most cost-effective. If the probability was 0%, LC alone was the most cost-effective. Our model was sensitive to 1 health input: specificity of IOC, and 3 costs: cost of hospitalization for LC with CBDE, cost of hospitalization for LC without CBDE, and cost of LC with IOC.

CONCLUSIONS:
The most cost-effective treatment strategy for the majority of patients with symptomatic cholelithiasis is LC with routine IOC. If stones are detected, CBDE should be forgone and the patient referred for ERCP. (J Am Coll Surg 2011;212:1049–1060. © 2011 by the American College of Surgeons)

Approximately 10% of patients who undergo cholecystectomy for symptomatic cholelithiasis also have common bile duct (CBD) stones. Although the diagnosis of symptomatic cholelithiasis (biliary colic and acute cholecystitis) is usually straightforward, determining whether CBD stones are present is more challenging. To estimate the probability of CBD stones, physicians rely on clinical clues such as jaundice, ultrasound findings of CBD or intrahepatic ductal dilation, or laboratory abnormalities including bilirubin and/or alkaline phosphatase elevation. These parameters can provide only an estimate. Usually the clinician must choose a treatment strategy without knowing for certain whether a patient has CBD stones.

Both laparoscopic common bile duct exploration (CBDE) and endoscopic retrograde cholangiopancreatography (ERCP) with sphincterotomy are safe and effective methods of clearing stones from the CBD. Randomized controlled trials comparing ERCP with laparoscopic CBDE have demonstrated similar efficacy for removal of CBD stones. If these 2 treatments are equally effective, then it is worthwhile to determine which costs less. Previous cost-effectiveness analyses have yielded mixed results,

Author Disclosure Information: Nothing to disclose. Editor Disclosure Information: Nothing to disclose.

This study is supported by the National Institute of Health grant T32 GM008258-21 (LMB) and K24 DK080941 (JMI).

Received November 16, 2010; Revised February 3, 2011; Accepted February 4, 2011.

From the Department of Surgery, University of California, San Francisco (Brown, Rogers); the Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco General Hospital (Cello), San Francisco, CA; the Department of Surgery, Division of Trauma and Critical Care, Medical College of Wisconsin, Milwaukee, WI (Brasel); and the Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA (Inadomi).

Correspondence address: Lisa M Brown, MD, MAS, University of California, San Francisco, Surgery Education Office, 513 Parnassus Avenue, Room S-321, San Francisco, CA 94143-0470. email: Lisa.Brown@ucsfmedctr.org

© 2011 by the American College of Surgeons
Published by Elsevier Inc.

ISSN 1072-7515/11/$36.00
doi:10.1016/j.jamcollsurg.2011.02.017
with one study concluding that preoperative ERCP followed by laparoscopic cholecystectomy (LC) is the most cost-effective strategy\(^8\) and others concluding that LC with CBDE is the most cost-effective.\(^7,9\) Our aim was to determine the most cost-effective treatment strategy for patients with symptomatic cholelithiasis and possible CBD stones.

METHODS

Decision model

We developed a decision model that included the 5 most commonly used treatment strategies for patients with symptomatic cholelithiasis and possible CBD stones (Fig. 1): (1) LC alone followed by expectant management (Fig. 2, online only); (2) preoperative ERCP followed by LC (Fig. 3, online only); (3) LC with intraoperative cholangiography (IOC) \(\pm\) CBDE depending on whether stones were detected during IOC (Fig. 4, online only); (4) LC followed by postoperative ERCP (Fig. 5, online only); and (5) LC with IOC \(\pm\) postoperative ERCP depending on whether stones were detected during IOC (Fig. 6, online only).

The probabilities of morbidity and mortality associated with ERCP, LC with IOC \(\pm\) CBDE, and LC alone were included in the model (Table 1). Only complications that required prolonged hospital stay, readmission, or additional procedures were considered for our analysis.

The rate of successful completion of diagnostic testing, test characteristics (sensitivity and specificity), and the rate of successful therapeutic intervention were considered for ERCP and LC with IOC \(\pm\) CBDE.

The base case scenario for our analysis is a 65-year-old woman who presents to the emergency department with symptomatic cholelithiasis. She has a 10% probability of having CBD stones in addition to gallstones, and when choosing a treatment strategy it is uncertain whether she has CBD stones. Each strategy was carried out until the patient was found not to have CBD stones, was found to have CBD stones and underwent removal, or died. The pretest probability of CBD stones was varied from 0% to 100% and the most cost-effective treatment strategy was determined at each probability.

Model assumptions

Within each treatment strategy the same assumptions were used to ensure consistent clinical judgment between strategies. If ERCP or laparoscopic CBDE failed because the CBD could not be cannulated or CBD stones could not be removed, the other therapy served as the rescue therapy. If a patient underwent ERCP but the CBD could not be cannulated or CBD stones could not be removed, we assumed this patient would undergo successful non-endoscopic CBD stone removal via either an open CBDE, laparoscopic CBDE, or transhepatic approach. Similarly, if a patient underwent IOC but the CBD could not be cannulated, or underwent CBDE but CBD stones could not be

Abbreviations and Acronyms

CBD = common bile duct
CBDE = common bile duct exploration
CMS = Centers for Medicare and Medicaid Services
CPT = Current Procedural Terminology
DRG = Diagnosis Related Group
EUS = endoscopic ultrasound
IOC = intraoperative cholangiography
LC = laparoscopic cholecystectomy
LOS = length of stay
MRCP = magnetic resonance cholangiopancreatography
<table>
<thead>
<tr>
<th>Variable</th>
<th>Base</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of CBD stones, %</td>
<td>10</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>ERCP, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannulation</td>
<td>94.4</td>
<td>83</td>
<td>99.5</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>96.0</td>
<td>Not varied</td>
<td>Not varied</td>
</tr>
<tr>
<td>Specificity</td>
<td>92.0</td>
<td>Not varied</td>
<td>Not varied</td>
</tr>
<tr>
<td>Stone removal</td>
<td>94.0</td>
<td>71</td>
<td>98</td>
</tr>
<tr>
<td>Complications</td>
<td>11.3</td>
<td>10.2</td>
<td>13.5</td>
</tr>
<tr>
<td>Mortality</td>
<td>0.7</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>LC with IOC and CBDE, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannulation</td>
<td>95.9</td>
<td>Not varied</td>
<td>Not varied</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>97.0</td>
<td>48.5</td>
<td>100</td>
</tr>
<tr>
<td>Specificity</td>
<td>99.0</td>
<td>49.5</td>
<td>100</td>
</tr>
<tr>
<td>Stone removal</td>
<td>91.1</td>
<td>75</td>
<td>97.3</td>
</tr>
<tr>
<td>Complications</td>
<td>3.2</td>
<td>1.4</td>
<td>15.8</td>
</tr>
<tr>
<td>Mortality</td>
<td>0.3</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>LC, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complications</td>
<td>2.6</td>
<td>1.3</td>
<td>7.1</td>
</tr>
<tr>
<td>Mortality</td>
<td>0.3</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Costs, $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis related groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystectomy with CBDE with complications and comorbidities (195)</td>
<td>15,732</td>
<td>7,866</td>
<td>31,464</td>
</tr>
<tr>
<td>Cystectomy with CBDE without complications and comorbidities (196)</td>
<td>10,554</td>
<td>5,277</td>
<td>21,108</td>
</tr>
<tr>
<td>LC without CBDE with complications and comorbidities (493)</td>
<td>9,696</td>
<td>4,848</td>
<td>19,392</td>
</tr>
<tr>
<td>LC without CBDE without complications and comorbidities (494)</td>
<td>6,678</td>
<td>3,339</td>
<td>13,356</td>
</tr>
<tr>
<td>Choledocholithias (ICD-9 code 574.51)</td>
<td>7,411</td>
<td>3,705.50</td>
<td>14,822</td>
</tr>
<tr>
<td>Current procedural terminology (CPT) codes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERCP, diagnostic (43260)</td>
<td>403.80</td>
<td>201.90</td>
<td>807.60</td>
</tr>
<tr>
<td>ERCP, with sphincterotomy/papillotomy (43262)</td>
<td>498.59</td>
<td>249.30</td>
<td>997.18</td>
</tr>
<tr>
<td>ERCP, with endoscopic removal of calculus/calculi from biliary ducts (43264)</td>
<td>598.56</td>
<td>299.28</td>
<td>1,197.12</td>
</tr>
<tr>
<td>Laparoscopy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC (47562)</td>
<td>663.99</td>
<td>332.00</td>
<td>1,327.98</td>
</tr>
<tr>
<td>LC with IOC (47563)</td>
<td>680.58</td>
<td>340.29</td>
<td>1,301.16</td>
</tr>
<tr>
<td>LC with CBDE (47564)</td>
<td>786.97</td>
<td>393.49</td>
<td>1,573.94</td>
</tr>
<tr>
<td>Nonendoscopic stone removal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open cholecystectomy with exploration of the common duct (47610)</td>
<td>1,129.25</td>
<td>564.63</td>
<td>2,258.50</td>
</tr>
<tr>
<td>LC with exploration of the common duct (47564)</td>
<td>786.97</td>
<td>Not varied</td>
<td>Not varied</td>
</tr>
<tr>
<td>Biliary endoscopy, percutaneous via T-tube or other tract; with removal of calculus/calculi (47554)</td>
<td>485.82</td>
<td>Not varied</td>
<td>Not varied</td>
</tr>
<tr>
<td>Complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERCP complications</td>
<td>273.60</td>
<td>136.80</td>
<td>547.20</td>
</tr>
<tr>
<td>LC complications</td>
<td>384.30</td>
<td>192.15</td>
<td>656.62</td>
</tr>
<tr>
<td>LC with CBDE complications</td>
<td>328.31</td>
<td>164.16</td>
<td>656.62</td>
</tr>
<tr>
<td>Costs of individual complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resection or debridement of pancreas and peripancreatic tissue for acute necrotizing pancreatitis (48105)</td>
<td>2,570.11</td>
<td>Not varied</td>
<td>Not varied</td>
</tr>
</tbody>
</table>

(continued)
removed, we assumed this patient would undergo successful ERCP stone removal. In all patients who underwent ERCP, we assumed that it might take more than 1 ERCP to ensure successful diagnosis and/or removal of CBD stones; the probability for this was based on published literature.

Our model takes into account patients who may experience signs and symptoms of retained CBD stones after a hospitalization that included either a false negative ERCP or IOC. We acknowledge that some patients with retained CBD stones will not seek medical care because their symptoms are very mild, the stones pass spontaneously, or the stones are too small to lead to symptoms. However, we assumed the worst-case scenario: every patient with either a false negative ERCP or IOC would present with evidence of retained CBD stones. We also assumed these patients were readmitted to the hospital and underwent an ERCP attempt at CBD stone removal.

We did not include patient preferences (health state utilities) in our model because there are no published data for patient preferences for choledocholithiasis and we did not want to include invalidated data in the model. In addition, we assumed that choledocholithiasis, either symptomatic or asymptomatic, would not cause long-term changes in quality of life.

Health inputs

Endoscopic retrograde cholangiopancreatography

- **ERCP cannulation.** There are many recent randomized controlled trials investigating new ERCP cannulation techniques. The techniques and equipment used for diagnostic and therapeutic ERCP have evolved over time. Therefore, the most recent data best represent the methods currently used for selective cannulation of the CBD. The overall success rate of ERCP biliary cannulation in expert hands is 94.4%. This was determined by taking a weighted average of the most recent ERCP cannulation randomized controlled trials.10-15

- **ERCP sensitivity and specificity.** A study by Stabuc and coworkers16 determined the sensitivity and specificity of ERCP for detecting CBD stones to be 96% and 92%,
respectively. In 38 consecutive patients with acute biliary pancreatitis, endoscopic ultrasonography (EUS) and ERCP were done. If either the EUS or ERCP (or both) were positive for CBD stones, an endoscopic sphincterotomy was done. The final diagnosis regarding whether or not the patient had CBD stones was based on extraction of stones after sphincterotomy. If both EUS and ERCP were negative, then it was assumed that the patient did not have stones.

ERCP stone removal. Two recent randomized controlled trials investigating new ERCP cannulation techniques combined with 8 randomized controlled trials from the 1990s provided the summary estimate of 94% for ERCP stone removal.

ERCP complications. The estimated ERCP complication rate is 11.3%. This estimate is based on 2 large prospective studies that prospectively determined the complication rate for ERCP. The first study is a landmark article by Freeman and coworkers detailing the complications after ERCP with endoscopic sphincterotomy in 2,347 patients. The second study included 1,177 patients undergoing diagnostic ERCP, some of whom also underwent endoscopic intervention for attempted CBD stone removal.

ERCP mortality. The probability of mortality associated with ERCP is 0.7%. This estimate is based on the same 2 large prospective studies used to determine the ERCP complication estimate and 2 randomized controlled trials comparing ERCP with surgical removal of CBD stones.

Laparoscopy

IOC cannulation. The largest and most recent series of IOC determined the sensitivity and specificity of IOC for detecting CBD stones. This study enrolled 1,171 patients undergoing laparoscopic cholecystectomy. Routine IOC could not be completed in 48 patients. Therefore, the success rate of IOC was 95.9%. All cholangiograms in this study used dynamic real-time intraoperative fluoroscopy using a C-arm, 10 to 40 mL of Omnipaque (GE Healthcare) as contrast, and glucagon to prevent papillary spasm.

IOC sensitivity and specificity. This same study determined the sensitivity and specificity of IOC to be 97% and 99%, respectively. If a patient had a negative IOC with no postoperative biliary symptoms, this was a true negative. If a patient developed biliary symptoms after a negative IOC, this was a false negative IOC. A positive IOC followed by a CBD exploration and/or postoperative ERCP, magnetic resonance cholangiopancreatography (MRCP), or postoperative cholangiography revealing stones was a true positive. A positive IOC followed by a CBD exploration, postoperative ERCP, MRCP, or postoperative cholangiography that revealed no stones was a false positive.

Laparoscopic CBDE stone removal. The summary estimate of 91.1% for CBD stone removal by laparoscopic CBDE was determined by 7 recent studies from 2003 to 2009 and 2 randomized controlled trials from the late 1990s.

Laparoscopic cholecystectomy complications. The complication rate for LC is 2.6%. This estimate is based on 9 studies. Four of these studies are randomized controlled trials and all compared the outcomes of ambulatory versus overnight stay LC or reported outcomes of LC in a large series of patients.

Laparoscopic cholecystectomy and CBDE complications. The complication rate for LC and CBDE is 3.2%. This is a summary estimate of 5 studies. The largest series retrospectively analyzed 1 surgeon’s 12-year experience with laparoscopic CBDE in 3,544 patients.

Surgical mortality. The mortality estimate for LC with or without CBDE is 0.3%. This estimate is based on a large cohort study (3,544) of laparoscopic outcomes in addition to 3 other studies.

Costs

The perspective of this analysis is that of a third-party payer, the Centers for Medicare and Medicaid Services (CMS). Although CMS generally dictates health care reimbursement for enrollees 65 years of age or older, their costs can also be used to estimate reimbursements for other populations because they represent a national standard followed by most other health care insurers. We classified hospitalizations according to Diagnosis Related Groups (DRGs) and International Classification of Diseases, Ninth Revision (ICD-9) codes. The median cost of hospitalization for each DRG and ICD-9 code was derived from the 2006 national CMS data found on the US Department of Health and Human Service’s Healthcare Cost and Utilization Project Website. Professional fees for each procedure are coded using Current Procedural Terminology (CPT) codes. All procedures were assumed to occur in the inpatient setting, so outpatient costs were not used. The CPT codes we used were identified from the Website of the American Medical Association (AMA). Professional fees for each procedure done within a treatment strategy were included in the total cost for that particular strategy.

For patients who underwent an ERCP without successful CBD cannulation, the cost of a diagnostic ERCP was used. For patients with CBD stones, regardless of whether stone removal was successful, the cost of an ERCP with stone removal was used. Patients who returned to the hospital with evidence of retained CBD stones after discharge were assumed to have CBD stones, and the cost of an ERCP with stone removal was used. Finally, in the LC
alone strategy, if patients presented with symptoms of retained CBD stones, but no stones were identified on ERCP, the cost of an ERCP with sphincterotomy was used.

For patients who underwent an unsuccessful ERCP followed by rescue nonendoscopic stone removal (via either an open CBDE, laparoscopic CBDE, or transhepatic approach), the cost of an open CBDE was used. The cost of open CBDE is more expensive than either laparoscopic CBDE or transhepatic stone removal.

If a patient experienced complications during a hospitalization, the hospital DRG reflected this; there are 2 DRGs for each type of hospitalization, 1 with complications and comorbidities and 1 without. Furthermore, micro-costing was done to reflect the additional cost of complications for each procedure. For ERCP, LC, and LC with CBDE, the cost of complications was determined by taking a weighted average of the cost of managing the most common complications for a particular procedure (ERCP: pancreatitis, hemorrhage, cholangitis, and bowel perforation; LC: bile leak, wound hematoma/infection, intra-abdominal hemorrhage, intra-abdominal abscess, and need for reoperation. LC with CBDE: bile leak, wound hematoma/infection, intra-abdominal hemorrhage, and intra-abdominal abscess).

Length of stay
The mean lengths of stay (LOS) for each DRG and ICD-9 code were used when available from the 2006 CMS data. The DRG for a cholecystectomy with CBDE includes pooled data from both open and laparoscopic approaches. Therefore, for the LC with CBDE strategy we used LOS data from a recently published clinical trial.43 In that trial 61 patients were randomized to LC with CBDE and the average LOS was 5.5 days. This estimate was used for an uncomplicated hospital stay. For a complicated stay, 8.0 days was used as the estimated LOS because this would make the difference between a complicated and an uncomplicated stay for LC with CBDE similar to the difference in length of stay for LC alone (2.7 days).

If a patient was discharged from the hospital after either a false-negative ERCP or IOC, and presented to the emergency department with signs and symptoms of retained CBD stones, an estimated LOS of 4.9 days was obtained from data on hospitalizations for the ICD-9 code for cholecystitis. For each uncomplicated ERCP, an additional day was added to the entire LOS and for each ERCP with complications, an additional 4 days was added.

Outcomes
The primary outcome of our analysis was the incremental cost-effectiveness ratio, defined as the ratio between the difference in costs and the difference in hospital LOS between competing strategies. If a strategy was both less costly and associated with a shorter LOS it was termed cost-saving and defined as a dominant strategy. If one strategy was more costly, but had a shorter length of stay, we calculated the cost per hospital day averted compared with a strategy that was less costly and associated with a longer length of stay. We used a 1-way sensitivity analysis to observe the effect of changing the pretest probability of CBD stones on cost-effectiveness. The pretest probability of CBD stones was varied from 0% to 100% and the cost and LOS of each of the 5 strategies were compared at each pretest probability. One-way sensitivity analyses were done by varying the health input estimates and the costs (Table 1) while keeping the probability of CBD stones at 10%. For the health inputs, the lowest estimate and the highest estimate from current published literature were used. When empiric data are not available, standard sensitivity analyses double and half any given input. Therefore, for the costs, each was doubled and halved and the sensitivity and specificity of IOC were halved and 100% was used as the upper estimate. The secondary outcome was a comparison of the total cost of each strategy (cost-minimization).

RESULTS
Cost minimization and cost-effectiveness
For the base case scenario, the LC with IOC ± ERCP strategy was cost-saving: it was the least costly and had the shortest LOS (Table 2, Fig. 7A). Across the CBD stone probability range of 1% to 100%, the LC with IOC ± ERCP strategy was least costly (Fig. 8), and across the probability range of 4% to 100% was also cost-saving.

If the probability of CBD stones was 0%, the LC alone strategy was cost-saving (Table 3). When the probability of CBD stones was 1% to 3%, the LC alone strategy had the shortest LOS, but the LC with IOC ± ERCP strategy was the least costly. Cost-effectiveness was determined by cal-
Calculating the cost per hospital day averted for the LC alone strategy compared with LC with IOC/ERCP. The cost per hospital day averted using the LC alone strategy increased as the probability of CBD stones increased from 1% to 3%.

As the probability of CBD stones increased beyond 90%, the preoperative ERCP and the postoperative ERCP
strategies had costs and LOS similar to the LC with IOC ± ERCP strategy (Table 4). The LC with IOC ± ERCP strategy dominated the other 2 strategies up to and including a probability of 100%. However, the cost difference between these 2 strategies and the LC with IOC ± ERCP strategy decreased as the probability of CBD stones increased.

Sensitivity analyses

When the health inputs for ERCP, LC, and LC with CBDE were varied according to the range of values found in the literature (Table 1), LC with IOC ± ERCP was consistently cost-saving except in 1 scenario. If the specificity of IOC was halved, the LC with IOC ± ERCP was the least costly, but had a slightly longer LOS ($7,988, LOS 3.8 days) than the LC alone strategy ($8,243, LOS 3.1 days) (Fig. 7B). The cost per hospital day averted for the LC alone strategy was $364 (Fig. 7B).

In addition, 3 costs determined which strategy was the least expensive: cost of hospitalization for LC with CBDE without complications (DRG 196), cost of hospitalization for LC without CBDE without complications (DRG 494), and cost of LC with IOC (CPT 47563). If the cost of hospitalization for LC with CBDE without complications (DRG 196) is halved, then LC with IOC ± CBDE became the least costly. However, this strategy had the longest LOS (Fig. 7C). Cost-effectiveness was determined by calculating the cost per hospital day averted for each of the other strategies compared with LC with IOC ± CBDE. The cost per hospital day averted was $472 for LC with IOC ± ERCP, $768 for LC alone, $2,437 for preoperative ERCP, and $2,443 for postoperative ERCP.

If the cost of hospitalization for LC without CBDE without complications (DRG 494) is doubled, the LC with IOC ± CBDE strategy was the least costly, but had the longest LOS (Fig. 7D). Accordingly, the cost per hospital day averted was $965 for LC with IOC ± ERCP, $1,348 for LC alone, $3,211 for preoperative ERCP, and $3,217 for postoperative ERCP.

The third cost that affected which strategy was most cost-effective was the cost of LC with IOC (CPT 47563). If this cost was doubled, but the cost of LC (without IOC or CBDE) remained unchanged, the LC alone strategy became the least expensive ($8,243, 3.1 days) (Fig. 7E). However, the LC with IOC ± ERCP was also inexpensive and had a slightly shorter LOS ($8,307, 2.9 days). The cost per hospital day averted for the LC with IOC ± ERCP was $319.50.

DISCUSSION

We found that the most cost-effective treatment for patients with symptomatic cholelithiasis, when the probability of CBD stones is 4% to 100%, is LC with IOC and postoperative ERCP if stones are detected on IOC. If the probability of CBD stones is 0%, LC alone is the most cost-effective approach. However, at the extremes of CBD stone probabilities, the differences in cost and LOS between the LC with IOC and postoperative ERCP strategy and some of the other strategies were small, and therefore may not be financially meaningful, rendering these strategies essentially equivalent. In addition to the probability of CBD stones, our model was sensitive to 1 health input: specificity of IOC, and 3 costs: cost of hospitalization for LC with CBDE (without complications), cost of hospitalization for LC without CBDE (without complications), and cost of LC with IOC.

The National Institutes of Health state-of-the-science statement on ERCP for diagnosis and therapy supports the use of IOC for patients with suspected CBD stones. In patients with CBD stones, this statement indicates that laparoscopic CBDE and postoperative ERCP are comparable in safety and clearing stones from the CBD duct. However, the consensus panel proposes that postoperative ERCP appears to be associated with greater health care cost and longer LOS, and suggests that laparoscopic CBDE is more efficient and preferable when surgical proficiency is available. In our analysis, a key determinant of treatment strategy cost was the cost of hospitalization. From the third party payer perspective taken by our analysis, the cost of hospitalization for patients undergoing CBDE in addition to cholecystectomy is much higher than for those undergoing cholecystectomy without CBDE. The cost difference between these 2 DRGs was large enough to render the laparoscopic CBDE approach not cost-effective. In addition, laparoscopic CBDE is unavailable at many institutions because it requires advanced surgical expertise; expertise in ERCP is more readily available in most US hospitals.
Our results suggest that IOC should be used across a wide range of CBD stone probabilities. This finding has 2 implications. First, many studies have tried to devise clinical scoring systems to determine the probability of CBD stones in patients with cholelithiasis. However, our results suggest that it is cost-effective to use IOC across almost the entire probability range (4% to 100%) of CBD stones. At a 2% probability of CBD stones, the LC alone strategy would cost $746 per hospital day averted compared with LC with IOC + ERCP. Similarly, at a 3% probability, it would cost $1,421. Perhaps the additional cost may not be worth the decrease in LOS, and LC with IOC + ERCP may be preferred if the probability of CBD stones is 2% to 3%. According to our analysis, it is important to identify patients with a 0% to 1% probability of CBD stones so that these patients can avoid IOC and can undergo LC alone followed by expectant management. Jaundice, abnormal liver chemistries, and ductal dilation seen on ultrasound are indicators of CBD stones. If none of these are present, then it is highly unlikely that CBD stones are present. One study of biochemical predictors of the absence of CBD stones reported that patients with a normal serum gamma glutamyl transferase had a 2.1% risk of CBD stones (negative predictive value of 97.9%). Therefore, perhaps patients with a normal gamma glutamyl transferase may be best treated with LC followed by expectant management. Additional studies of predictors of the absence of CBD stones are needed to help to determine which patients should undergo LC followed by expectant management and which should undergo LC with IOC + ERCP.

The second implication of our findings is that surgeons striving for the most cost-effective care should routinely perform IOC. However, in a recent survey of members of the American College of Surgeons, only 381 surgeons of 1,411 (27%) considered themselves routine (vs selective) IOC users. Some surgeons do not use IOC because they believe it adds too much time to the operation or is too costly, and it is not worth the potential benefit. Two prospective studies reported that it takes about 15 minutes to perform an IOC, and surgeons who used IOC routinely reported faster IOC completion times than selective IOC users. From a cost perspective, 2 studies found that routine use of IOC during LC was cost-effective for preventing CBD injury. In our study, the use of IOC in addition to LC added little extra cost. However, the use of CBDE in addition to LC added significantly more cost because the use of CBDE changes the DRG for the hospitalization.

One major advantage of using IOC routinely is that the sensitivity (97%) and negative predictive value (97.9%) are high. So, if CBD stones are present they should be detected on IOC and a normal IOC almost always means that the CBD is clear. A negative IOC can prevent patients from undergoing unnecessary attempts at CBD clearance.

<table>
<thead>
<tr>
<th>Probability of CBD stones, %</th>
<th>LC alone</th>
<th>LC/IOC ± ERCP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost, US $</td>
<td>LOS, d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>7,440</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>7,520</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>7,600</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>7,680</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>7,760</td>
<td>2.8</td>
</tr>
</tbody>
</table>

*Cost per hospital day averted using the LC alone strategy.

CBD, common bile duct; IOC, intraoperative cholangiography; LC, laparoscopic cholecystectomy; LOS, length of stay.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>8,767</td>
<td>5.1</td>
<td>133</td>
<td>8,634</td>
<td>4.8</td>
</tr>
<tr>
<td>92</td>
<td>8,777</td>
<td>5.1</td>
<td>118</td>
<td>8,659</td>
<td>4.8</td>
</tr>
<tr>
<td>94</td>
<td>8,787</td>
<td>5.1</td>
<td>103</td>
<td>8,685</td>
<td>4.9</td>
</tr>
<tr>
<td>96</td>
<td>8,798</td>
<td>5.1</td>
<td>88</td>
<td>8,710</td>
<td>4.9</td>
</tr>
<tr>
<td>98</td>
<td>8,808</td>
<td>5.1</td>
<td>73</td>
<td>8,735</td>
<td>5.0</td>
</tr>
<tr>
<td>100</td>
<td>8,819</td>
<td>5.1</td>
<td>59</td>
<td>8,760</td>
<td>5.0</td>
</tr>
</tbody>
</table>

CBD, common bile duct; IOC, intraoperative cholangiography; LC, laparoscopic cholecystectomy; LOS, length of stay.
patients can be reassured that the risk of complications from retained CBD stones is extremely low.

The natural history of CBD stones is not well defined. The results of one study suggest that not all patients with CBD stones found at the time of IOC will need to be removed via postoperative ERCP because some CBD stones will pass spontaneously. However, there is no way to predict which CBD stones will pass and which will lead to costly complications such as pancreatitis or cholangitis.

We did not include patient preferences (health state utilities) in our model for 3 reasons. First, we assumed that asymptomatic choledocholithiasis would not cause long-term changes in quality of life. Second, we assumed the disability incurred by each treatment strategy, including missed diagnoses of choledocholithiasis, would be included in the denominator of the cost-effectiveness analysis, where the cost per hospital day averted was examined. Third, there are no published data for patient preferences for choledocholithiasis, symptomatic or asymptomatic, and we did not want to include invalidated data in the model. Health state utilities would likely affect this analysis and additional research on this topic is needed.

Our analysis provides a unique evaluation of the therapeutic options for patients with possible CBD stones because it differs from earlier studies in 3 important ways. First, previous studies modeled scenarios that are not as widely applicable as ours. One study compared ERCP with laparoscopic CBDE for incidentally discovered CBD stones on IOC at the time of LC. Because most surgeons do not use IOC routinely, that study represents a small proportion of all patients undergoing LC. Another study compared several strategies, but each was modeled for 2 different scenarios, 1 in which CBD stones were present and 1 in which they were absent. Our study examines the decision-making process more broadly than these studies because we started with the more common clinical scenario of a patient with symptomatic cholelithiasis who may or may not have CBD stones. Second, 1 previous study assumed that there were no procedural deaths and the only complications considered were pancreatitis after ERCP and bile leak after laparoscopic CBDE. We included the risk of death and any complication that increased cost or LOS for each diagnostic and therapeutic procedure in our model. This is important because clinicians decide which procedures to use by considering the associated risks and benefits. Finally, most of these studies used institution costs or costs from the provider perspective. Only 1 study, in addition to ours, used a third-party payer perspective. Using national Medicare data for the costs makes our results more generalizable across the United States.

The only analysis besides ours to vary the probability of CBD stones found that LC followed by expectant management was the most cost-effective strategy at a CBD stone risk between 0% and 11%; above 55%, ERCP was the most cost-effective. If the risk was between 12% and 54%, EUS was the most cost-effective. If EUS was not available, IOC became the most cost-effective if the risk was between 17% and 34%. Both EUS and MRCP are accurate for detecting CBD stones. However, we excluded these modalities from our model because we included only modalities that could be used to both diagnose and treat CBD stones. In addition, that study stated that ERCP was superior to IOC and therefore used a higher sensitivity and specificity for ERCP than IOC. In our study, we used test characteristics from current literature, and the sensitivity and specificity of IOC are higher than that of ERCP. Finally, in that study the cost perspective is that of the provider and in our study the cost perspective is that of a third party. The most cost-effective diagnostic and therapeutic strategies from the provider perspective may not be the same as those from a third party perspective.

CONCLUSIONS

In conclusion, the most cost-effective treatment strategy for the majority of patients with symptomatic cholelithiasis (4% to 100% probability of CBD stones) is LC with routine IOC. If stones are detected, CBDE should be forgone and the patient referred for ERCP. For those patients with a 0% probability of CBD stones, LC alone followed by expectant management is the most cost-effective strategy.

Author Contributions

Study conception and design: Brown, Rogers, Cello, Inadomi
Acquisition of data: Brown, Inadomi
Analysis and interpretation of data: Brown, Rogers, Cello, Brasel, Inadomi
Drafting of manuscript: Brown, Inadomi
Critical revision: Brown, Rogers, Cello, Brasel, Inadomi

Acknowledgment: The authors would like to thank Pamela Derish for her assistance with editing this manuscript.

REFERENCES

37. Lillemoe KD, Lie JW, Talamin MA, et al. Laparoscopic chole-

Figure 2. Laparoscopic cholecystectomy (Lap Chole) alone followed by expectant management (online only).
Figure 3. Preoperative ERCP followed by laparoscopic cholecystectomy (Lap Chole) (online only).
Figure 4. Laparoscopic cholecystectomy (Lap Chole) and intraoperative cholangiogram (IOC) ± laparoscopic common bile duct exploration (CBDE) (online only).
Figure 5. Laparoscopic cholecystectomy (Lap Chole) followed by postoperative ERCP (online only).
Figure 6. Laparoscopic cholecystectomy (Lap Chole) and intraoperative cholangiogram (IOC) ± postoperative ERCP (online only).
FIGURE 6. Continued.
FIGURE 6. Continued.